Nonnormal Edge-Transitive Cubic Cayley Graphs of Dihedral Groups
نویسندگان
چکیده
منابع مشابه
Product of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملOn 2-arc-transitive Cayley Graphs of Dihedral Groups
Slovenija Abstract A partial extension of the results in 1], where 2-arc-transitive cir-culants are classiied, is given. It is proved that a 2-arc-transitive Cayley graph of a dihedral group is either a complete graph or a bi-partite graph.
متن کاملThe Normality of Cubic Cayley Graphs for Dihedral Groups
A Cayley graph Γ = Cay(G, S) is called normal for G, if GR, the right regular representation of G, is a normal subgroup of the full automorphism group Aut(Γ ) of Γ . In this paper we determine the normality of connected and undirected Cayley graphs of valency three for dihedral groups. 2000 Mathematics Subject Classification: 05C25, 20B25.
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISRN Algebra
سال: 2011
ISSN: 2090-6285,2090-6293
DOI: 10.5402/2011/428959